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ABSTRACT:  This article is concerned to study convection-diffusion equation is:  
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where    denotes the peclet numbers,   (     )       show velocity vector,   is the solution of the equation (1) and   

is a rectangular domain with suitable boundary conditions. We discretized   with uniform mesh sizes,     and    in the   and 

  directions respectively. 

Consider a special case where                in equation (1). Equation (1) can be extended to any values of        then 

we have : 

   
 

  
(        )        =  (   )           (2) 

The convection-diffusion equation is widely used in modeling and simulations of various complex phenomena in science and 

engineering. As it has many applications, so we discuss techniques for the numerical solution of this equation.  

 This paper is concerned with the development of fast iterative methods for the numerical solution of linear partial differential 

equation. In this work convection–diffusion equation with a small parameter multiplying with diffusion term is considered.  A 

fourth-order compact difference scheme with uniform mesh sizes is employed to discretize a 2‒dimmensional convection-

diffusion equation. In this work a multi-grid method is developed for the solution of 2D convection diffusion equation based on 

fourth order compact scheme. The method is faster than any other direct or iterative solving methods. Multi-grid method using 

Gauss-Seidel is considered to solve the linear system of equations. Multi-grid method works by decomposing a problem into 

separate length scales, and using an iterative solver method that optimizes error reduction for that length scale. For  multi-

grid to work, several sub-routine must be developed to pass the data from coarse grid to fine grid, from fine grid to coarse 

grid,  and correction of the error at each grid interval. 

Finally multigrid method with fourth order compact difference scheme is compared with the standard second order central 

difference scheme.  Numerical results show the efficiency of this method. 
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1. INTRODUCTION  
There are two terms involved in convection-diffusion 

equation, first is convection and second is diffusion. 

Convection is a physical way by which property is transfer 

according to its flow, on the other hand diffusion is usually 

investigated phenomena play an important role in scientific 

modeling problems in which heat transfer and fluid flow take 

place. There are large numbers of physical problems in which 

convection and diffusion are involved, such as in the 

modeling of semi-conductors, transport of air and ground 

water pollutant etc, [12].  

Mathematical models which contain a combination of 

convection and diffusion procedure are widely used in all 

sciences [14, 1]. Research for that procedure is very 

important but complicated, when convection is dominant [7]. 

Convection diffusion equation is a second order partial 

differential equation. We use fourth order compact difference 

scheme for approximation of convection diffusion equation, 

after the implementation of this scheme we get system of 

linear equations. Matrix of these equations is diagonally 

dominant. 

The numerical solution of convection-diffusion equation has 

been developed by using different approaches such as second 

order upwind difference scheme and five point central 

difference scheme. But the upwind difference scheme cannot 

give desirable results, because it frequently prevents 

oscillation and another disadvantage is that it reduces 

accuracy to the  (  ) [17]. The central difference scheme 

has a truncation error of order  (   ), its results are less 

accurate for large coefficient of highest order derivatives 

[21]. To obtain more accurate solution for convection 

diffusion equation, more complex procedures are required.      

In this work multigrid method with fourth order compact 

approximation is used to solve the 2D convection-diffusion 

equation on uniform grids. We use multi-grid method with 

fourth order compact scheme, because its numerical results 

are more accurate and efficient then the second order scheme.  
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2. Fourth order compact difference scheme  

We descretize now the two dimensional convection diffusion 

equation in both   and   directions with uniform mesh     

and    respectively, using second order central differences.  

We can write equation (1) as: 

 (  
        

     )   (             )        ,    

                                                                                (2) 

where       (     ) and       (     )  

 The fourth order compact approximation for 1D convection-

diffusion equation can be written as done in  [15] : 
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equation (3) can also be written as: 
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Equation (2) becomes  
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the equation (4) can be written as :      
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 Now we simplify the fourth-order compact approximation 

scheme and neglecting the order  (   ) terms, then equation 

(5) can be written as  
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generally, we denote the mesh ratio by     
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expanding by 2
nd

 order difference formula, we get  
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 by discretization, we get the following: 
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 Putting       , then we have: 
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Now the right hand side (  )  of (6) can be simplified as: 
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Using second order central difference approximation, we can 

write as:        
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Or  
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Now putting              and     in equation (6)  we have: 

 
 

 
(
                                     

   
)  

 

 
(
             

   
) 

 
 

 
(
             

   
)  

  

 
(
    

   
)  

 

    
 

(
                                    

                
)      

   
  

  
(                                 ) .             (7)   

Multiplying both side of equation (7) by      , we get the 

following equation: 
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   equation (8) can be written as:     
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Let      
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.  For equation (9) we have          
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Using equation (10), we get the system of linear equations by  

     ,                                          (11) 

where   is the coefficient  matrix and is very large 

symmetric matrix,    is the vector  and   is the right hand 

side vector. The matrix   can be written in the form of block 

tri-diagonal matrix, each block of order    so order of the co-

efficient matrix   is      , where  

       [        ],  and   

        [         ]         [      ]    
    [      ]  are symmetric tri-diagonal sub matrices of the 

order   , where each        and    denote the sub-matrices 

of each line along one direction. The matrix   contains 

constant blocks at each grid line, where   used to show the 

number of grid points. The scheme has nine points stencil for 

the fourth order compact scheme which is given below. 

[
                          
                    
                           

]   

this is the stencil notations for 2D convection diffusion 

equation in (   ) plane,  numerical results show that  fourth 

order compact scheme has a good accuracy.   

 

 3.  MULTIGRID METHOD       

   Numerical solution of convection-diffusion equation has 

been developed by using different approaches such as second 

order upwind difference scheme and five point central 

difference schemes [17,21]. For the solution of the system of 

linear equations obtained from the fourth order compact 

scheme, if we use classical iterative methods like Jacobi and 

Gauss-Seidel method this will slow the convergence due to 

large linear system. So we have to solve equation (11) with 

multigrid method. In this work we use multigrid algorithm, 

with Gauss-Seidel method as a smoother. In order to remove 

high frequency error using fourth order compact difference 

scheme, multigrid method uses some relaxation methods and 

to remove the errors, it uses coarse grid correction. Multigrid 

method with fourth order compact scheme is more efficient 

than the corresponding second order scheme. In this method 

first high frequency components of the error are reduced by 

applying iterative techniques like Gauss-Seidel or Jacobi 

methods. At the same time, the low frequency error 

components are removed by coarse-grid correction 

procedures. We suppose that the grid points are ordered 

lexicographically, i.e. first from left to right along the x 

direction, then from bottom to top along  y direction. In 

multi-grid method, we use bilinear interpolation through 

which corrections transfer from coarse grid to a fine grid, we 

also use full-weighting scheme to update the residual on a 

coarse grid [8]. All multigrid methods use V-cycle or W-

cycle algorithm.   

4. Multi-grid algorithm 

The multi-grid algorithm for solving          
Let parameter    represent the number of cycle of the multi-

grid on each level, if     it is called V-cycle and if     is 

called a W-cycle. 

    pre-smoothing step on each level. 

    post-smoothing step on each level. 

FAS multi-grid cycle  

         (             ) 
1. If    is the coarsest grid solve the equation then 

stop. 

Else do the pre-smoothing step: 

       (            )       (Pre-smoothing) 

2. Restriction : 

   
                     

  (       )  
             

   (             ). 

3. Interpolation:   

           
 (     ̅  )   

       (        )       (Post-smoothing).           

5. Numerical experiments 

In order to obtain results with multigrid method, we perform 

some numerical experiments by solving a 2D convection-

diffusion equation on the unit square domain[   ]  [   ]. 
The right hand side function with the Dirichlet boundary 

conditions are described to satisfy the exact solutions, 

(1)    (   )                .   

(2)  (   )  (     )(     ).  
(3)  (   )     (   )          
          In this work we will observe the results regarding, 

approximate solution, CPU time and residual by multi grid 

method using fourth order compact difference scheme and 

compare it with multi grid method using second order central 

difference scheme. If we put         in equation (2) the 

convection-diffusion equation reduce to Poisson equation. 

We examine the behavior of the scheme for different values 

of  , Error is reduces for      . Especially when 

          the error is reduces efficiently. The fourth order 

compact difference scheme converges faster than the second 

order central difference scheme, which is clear from the 

tables (4.1), (4.2), (4.3). The maximum absolute error 

between the exact solution and approximate solution is given 

by :   

the error vector is                with    norm as: 

    
 

 
√∑     

  
       .                                             (12) 
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6. Comparison of fourth order compact scheme with 

second order central difference schemes 

We see that at each grid level, fourth order compact scheme 

is much more accurate than the second order central 

difference scheme for the number of interior grid points 

                  . The fourth order compact scheme 

is less time consuming than the second order central 

difference scheme using the same discretization parameters, 

   and   , in fourth order compact scheme the number of 

arithmetic operation is more than the second order central 

difference scheme. Despite it gives the best results especially 

at 

               

  From “table 4.1” we observe that the approximate solution 

for fourth order compact scheme is              achieved 

with      , similarly with       the approximate 

solution               is achieved from table 4.2.  

Example 4.1.  

                  (   ), where   

 (   )                 (   )      

           (        ) 
                             (            )  
 

        ,       

with the Drichlet boundary conditions on all sides of a unit 

square i.e       

 (   )   (   )   (   )   (   )      
with the exact solution    (   )                . 

Comparison of maximum absolute errors and CPU time 

(Seconds) for a multigrid method P=0.00001  

Figure 4.1: Left side figure shows the error graph and right 

side figure shows graph of the residuals norm. N=127 are the 

number of nodes.  

Example 4.2:  

                  (   ), where  

 (   )   (     )[(     )    (     )] 
    (     )[(     )    (     )] ,     (   )  [   ]   
  with the Drichlet boundary conditions on all sides of a unit 

square i.e 

 (   )   (   )   (   )   (   )      
with the exact solution   (   )  (     )(     ). 
Comparison of maximum absolute errors and CPU time 

(Seconds) for a multigrid method, P=0.00001 

 

 

Table 4.1 

N  2nd   Order CPU Residual 4th   Order CPU Residual 

3 

7 

15 

31 

63 

127 

           

            

            

            

            

            

0.0019 

0.0059 

0.0068 

0.0075 

0.0092 

0.0131 

             

             

             

             

            
            

            

            

            

            

            

            

0.0019 

0.0063 

0.0070 

0.0092 

0.0124 

0.0188 

             

             

             

             

             

             

 
Figure 4.1: Left side figure shows the error graph and right side figure shows graph of the residuals norm. N=127  

are the number of nodes. 

 

Table 4.2 
N 2nd   Order CPU Residual 4th  Order CPU Residual 

3 

7 

15 

31 

63 

127 

            

            

            

            

            

            

0.0019 

0.0067 

0.0064 

0.0074 

0.0087 

0.0138 

             

             

             

             

             

            

            

            

                     

            

            

                                    

0.0019 

0.0062 

0.0069 

0.0075 

0.0079 

0.0234 
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Figure 4.2: Left side figure shows the error graph and right side figure shows graph of the residuals norm. N=127  

are the number of nodes 

 

.Table 4.3 
N 2nd  Order CPU Residual 4th  Order CPU Residual 

3 

7 

15 

31 

63 

127 

            

            

            

            

            

            

0.0018 

0.0058 

0.0065 

0.0100 

0.0080 

0.0106 

             

             

             

             

             

            

            

            

            

            

            

            

0.0018 

0.0060 

0.0067 

0.0072 

0.0140 

0.0207 

             

             

             

             

             

             

   
Figure 4.3: Left side figure shows the error graph and right side figure shows graph of the residuals norm. N=127  

are the number of nodes. 

 

Example 4.3:   

                 (   ), where  

 (   )   (    )       (           )   

         (       ) 
               (    )          (   )  [   ]  
with the Drichlet boundary conditions on all side of a unit 

square i.e 

 (   )   (   )   (   )   (   )      
with the exact solution       (   )      (   )         
Comparison of maximum absolute errors and CPU (Seconds) 

for a multigrid method, P=0.00001 

We studied fourth order compact difference scheme for 

discretization of 2D convection diffusion equation. Multigrid 

method used to solve the resulting sparse linear systems. 

Multigrid method using Gauss-Seidel smoother is proved to 

be more effective for the solution of convection diffusion 

equation with given peclet number. Our numerical works 

show that multigrid method with fourth order compact 

scheme is more accurate than the second order central 

difference scheme, different figures show error graphs and 

residual norm.   

 

7. CONCLUSION AND FUTURE WORK 
In this research work, we have studied fourth order compact 

difference scheme with uniform mesh by discretization of the 

two dimensional convection-diffusion equation. Then we 

have solved the convection diffusion equation with the same 

difference scheme. We have studied this problem with 

boundary conditions and developed a multigrid method to 

solve the given system of equations efficiently.  The main 
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advantage of this method is to solve the convection diffusion 

equation with peclet number (         ) with high 

efficiency. Moreover it was found that multigrid method with 

Gauss-Seidel smoother works very fast which is based on 

fourth order compact difference scheme. 

  We conducted numerical experiments to test the accuracy of 

the multigrid method and found that multigrid method with 

fourth order compact scheme is more accurate and faster than 

the second order central difference scheme. The multigrid 

method discussed in this thesis can be applied to higher order 

2D convection -diffusion equation to calculate numerical 

solution efficiently.  
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